Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(41): 23850-23860, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647946

RESUMO

Tyrosine sulfation alters the biological activity of many proteins involved in different physiological and pathophysiological conditions, such as non-specific immune reaction, response to inflammation and ischemia, targeting of leukocytes and stem cells, or the formation of cancer metastases. Tyrosine sulfation is catalyzed by the enzymes tyrosylprotein sulfotransferases (TPST). In this study, we used QM/MM Car-Parrinello metadynamics simulations together with QM/MM potential energy calculations to investigate the catalytic mechanism of isoform TPST-1. The structural changes along the reaction coordinate are analyzed and discussed. Furthermore, both the methods supported the SN2 type of catalytic mechanism. The reaction barrier obtained from CPMD metadynamics was 12.8 kcal mol-1, and the potential energy scan led to reaction barriers of 11.6 kcal mol-1 and 13.7 kcal mol-1 with the B3LYP and OPBE functional, respectively. The comparison of the two methods (metadynamics and potential energy scan) may be helpful for future mechanistic studies. The insight into the reaction mechanism of TPST-1 might help with the rational design of transition-state TPST inhibitors.


Assuntos
Sulfotransferases/química , Biocatálise , Domínio Catalítico , Humanos , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
2.
ACS Omega ; 6(36): 23023-23027, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549102

RESUMO

Nicotinic acetylcholine receptors (nAChRs) comprise a large and ancient family of allosteric ion channels mediating synaptic transmission. The vast knowledge about nAChRs has become difficult to navigate. NAChRDB is a web-accessible resource of curated residue-level functional annotations of neuromuscular nAChRs. Interactive three-dimensional (3D) visualization and sequence alignment give further context to this rich and growing collection of experimental observations and computational predictions. NAChRDB is freely available at https://crocodile.ncbr.muni.cz/Apps/NAChRDB/, with interactive tutorials and regular updates to the content and web interface. No installation or user registration is required. NAChRDB is accessible through any modern internet browser on desktops and mobile devices. By providing immediate and systematic access to practical knowledge gained through decades of research, NAChRDB represents a powerful educational tool and helps guide discovery by revealing gaps in current knowledge and aiding the interpretation of results of molecular and structural biology experiments or computational studies.

4.
J Cheminform ; 13(1): 45, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193251

RESUMO

BACKGROUND: Partial atomic charges find many applications in computational chemistry, chemoinformatics, bioinformatics, and nanoscience. Currently, frequently used methods for charge calculation are the Electronegativity Equalization Method (EEM), Charge Equilibration method (QEq), and Extended QEq (EQeq). They all are fast, even for large molecules, but require empirical parameters. However, even these advanced methods have limitations-e.g., their application for peptides, proteins, and other macromolecules is problematic. An empirical charge calculation method that is promising for peptides and other macromolecular systems is the Split-charge Equilibration method (SQE) and its extension SQE+q0. Unfortunately, only one parameter set is available for these methods, and their implementation is not easily accessible. RESULTS: In this article, we present for the first time an optimized guided minimization method (optGM) for the fast parameterization of empirical charge calculation methods and compare it with the currently available guided minimization (GDMIN) method. Then, we introduce a further extension to SQE, SQE+qp, adapted for peptide datasets, and compare it with the common approaches EEM, QEq EQeq, SQE, and SQE+q0. Finally, we integrate SQE and SQE+qp into the web application Atomic Charge Calculator II (ACC II), including several parameter sets. CONCLUSION: The main contribution of the article is that it makes SQE methods with their parameters accessible to the users via the ACC II web application ( https://acc2.ncbr.muni.cz ) and also via a command-line application. Furthermore, our improvement, SQE+qp, provides an excellent solution for peptide datasets. Additionally, optGM provides comparable parameters to GDMIN in a markedly shorter time. Therefore, optGM allows us to perform parameterizations for charge calculation methods with more parameters (e.g., SQE and its extensions) using large datasets.

5.
Sci Rep ; 11(1): 12345, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117311

RESUMO

Protein structural families are groups of homologous proteins defined by the organization of secondary structure elements (SSEs). Nowadays, many families contain vast numbers of structures, and the SSEs can help to orient within them. Communities around specific protein families have even developed specialized SSE annotations, always assigning the same name to the equivalent SSEs in homologous proteins. A detailed analysis of the groups of equivalent SSEs provides an overview of the studied family and enriches the analysis of any particular protein at hand. We developed a workflow for the analysis of the secondary structure anatomy of a protein family. We applied this analysis to the model family of cytochromes P450 (CYPs)-a family of important biotransformation enzymes with a community-wide used SSE annotation. We report the occurrence, typical length and amino acid sequence for the equivalent SSE groups, the conservation/variability of these properties and relationship to the substrate recognition sites. We also suggest a generic residue numbering scheme for the CYP family. Comparing the bacterial and eukaryotic part of the family highlights the significant differences and reveals a well-known anomalous group of bacterial CYPs with some typically eukaryotic features. Our workflow for SSE annotation for CYP and other families can be freely used at address https://sestra.ncbr.muni.cz .


Assuntos
Sistema Enzimático do Citocromo P-450/química , Análise de Sequência de Proteína/métodos , Software , Animais , Humanos , Simulação de Dinâmica Molecular
6.
Nucleic Acids Res ; 49(W1): W431-W437, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33956157

RESUMO

Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Software , Internet , Conformação Proteica
7.
Glycobiology ; 31(8): 975-987, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33822042

RESUMO

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. The spectrum of disease is broad but among hospitalized patients with COVID-19, respiratory failure from acute respiratory distress syndrome is the leading cause of mortality. There is an urgent need for an effective treatment. The current focus has been developing novel therapeutics, including antivirals, protease inhibitors, vaccines and targeting the overactive cytokine response with anti-cytokine therapy. The overproduction of early response proinflammatory cytokines results in what has been described as a "cytokine storm" is leading eventually to death when the cells fail to terminate the inflammatory response. Accumulating evidence shows that inflammatory cytokines induce selectin ligands that play a crucial role in the pathogenesis of inflammatory diseases by mediating leukocyte migration from the blood into the tissue. Thus, the selectins and selectin ligands represent a promising therapeutic target for the treatment of COVID-19. In this paper, potential pan-selectin inhibitors were identified employing a virtual screening using a docking procedure. For this purpose, the Asinex and ZINC databases of ligands, including approved drugs, biogenic compounds and glycomimetics, altogether 923,602 compounds, were screened against the P-, L- and E-selectin. At first, the experimentally confirmed inhibitors were docked into all three selectins' carbohydrate recognition domains to assess the suitability of the screening procedure. Finally, based on the evaluation of ligands binding, we propose 10 purchasable pan-selectin inhibitors to develop COVID-19 therapeutics.


Assuntos
Antivirais/química , Materiais Biomiméticos/química , Tratamento Farmacológico da COVID-19 , Simulação por Computador , Bases de Dados de Compostos Químicos , SARS-CoV-2/química , Selectinas/química , Avaliação Pré-Clínica de Medicamentos , Humanos , SARS-CoV-2/metabolismo
8.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 126, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404533

RESUMO

Two citations in the article by Sehnal et al. [(2020), Acta Cryst. D76, 1167-1173] are corrected.

9.
Acta Crystallogr D Struct Biol ; 76(Pt 12): 1167-1173, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263322

RESUMO

Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.


Assuntos
Gráficos por Computador , Internet , Substâncias Macromoleculares/química , Software , Interface Usuário-Computador
10.
PLoS Comput Biol ; 16(10): e1008247, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075050

RESUMO

3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.


Assuntos
Cristalografia/métodos , Compressão de Dados/métodos , Modelos Moleculares , Software , Bases de Dados de Compostos Químicos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura
11.
ACS Omega ; 5(34): 21374-21384, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905330

RESUMO

We applied the transition path sampling (TPS) method to study the translocation step of the catalytic mechanism of galactofuranosyl transferase 2 (GlfT2). Using TPS in the field of enzymatic reactions is still relatively rare, and we show its effectiveness on this enzymatic system. We decipher an unknown mechanism of the translocation step and, thus, provide a complete understanding of the catalytic mechanism of GlfT2 at the atomistic level. The GlfT2 enzyme is involved in the formation of the mycobacterial cell wall and transfers galactofuranose (Galf) from UDP-Galf onto a growing acceptor Galf chain. The biosynthesis of the galactan chain is accomplished in a processive manner, with the growing acceptor substrate remaining bound to GlfT2. The glycosidic bond formed by GlfT2 between the two Galf residues alternates between ß-(1-6) and ß-(1-5) linkages. The translocation of the growing galactan between individual additions of Galf residues is crucial for the function of GlfT2. Analysis of unbiased trajectory ensembles revealed that the translocation proceeds differently depending on the glycosidic linkage between the last two Galf residues. We also showed that the protonation state of the catalytic residue Asp372 significantly influences the translocation. Approximate transition state structures and potential energy reaction barriers of the translocation process were determined. The calculated potential reaction barriers in the range of 6-14 kcal/mol show that the translocation process is not the rate-limiting step in galactan biosynthesis.

12.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575485

RESUMO

Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde's two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.


Assuntos
Adesão Celular , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Selectinas/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/patologia , Neoplasias/patologia
13.
Nucleic Acids Res ; 48(W1): W591-W596, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402071

RESUMO

Partial atomic charges serve as a simple model for the electrostatic distribution of a molecule that drives its interactions with its surroundings. Since partial atomic charges are frequently used in computational chemistry, chemoinformatics and bioinformatics, many computational approaches for calculating them have been introduced. The most applicable are fast and reasonably accurate empirical charge calculation approaches. Here, we introduce Atomic Charge Calculator II (ACC II), a web application that enables the calculation of partial atomic charges via all the main empirical approaches and for all types of molecules. ACC II implements 17 empirical charge calculation methods, including the highly cited (QEq, EEM), the recently published (EQeq, EQeq+C), and the old but still often used (PEOE). ACC II enables the fast calculation of charges even for large macromolecular structures. The web server also offers charge visualization, courtesy of the powerful LiteMol viewer. The calculation setup of ACC II is very straightforward and enables the quick calculation of high-quality partial charges. The application is available at https://acc2.ncbr.muni.cz.


Assuntos
Modelos Moleculares , Software , Hidrogênio/química , Internet , Estrutura Molecular , Fenóis/química , Receptores Nicotínicos/química , Eletricidade Estática , Proteína X Associada a bcl-2/química
14.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208534

RESUMO

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Assuntos
Carboidratos/química , Carbono/química , Biologia Computacional , Hidrogênio/química , Proteínas/química , Ligação de Hidrogênio , Técnicas In Vitro , Ligação Proteica , Termodinâmica
15.
Methods Mol Biol ; 2112: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006274

RESUMO

LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.


Assuntos
Conformação Proteica , Proteínas/química , Bases de Dados de Proteínas , Europa (Continente) , Internet , Software , Interface Usuário-Computador , Navegador
16.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691821

RESUMO

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Assuntos
Bases de Dados de Proteínas , Software , Análise por Conglomerados , Confiabilidade dos Dados , Europa (Continente) , Conformação Proteica , Interface Usuário-Computador
17.
Bioinformatics ; 35(24): 5389-5390, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31263870

RESUMO

SUMMARY: Structures in PDB tend to contain errors. This is a very serious issue for authors that rely on such potentially problematic data. The community of structural biologists develops validation methods as countermeasures, which are also included in the PDB deposition system. But how are these validation efforts influencing the structure quality of subsequently published data? Which quality aspects are improving, and which remain problematic? We developed ValTrendsDB, a database that provides the results of an extensive exploratory analysis of relationships between quality criteria, size and metadata of biomacromolecules. Key input data are sourced from PDB. The discovered trends are presented via precomputed information-rich plots. ValTrendsDB also supports the visualization of a set of user-defined structures on top of general quality trends. Therefore, ValTrendsDB enables users to see the quality of structures published by selected author, laboratory or journal, discover quality outliers, etc. ValTrendsDB is updated weekly. AVAILABILITY AND IMPLEMENTATION: Freely accessible at http://ncbr.muni.cz/ValTrendsDB. The web interface was implemented in JavaScript. The database was implemented in C++. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Bases de Dados de Proteínas , Internet , Proteínas , Interface Usuário-Computador
18.
Methods Mol Biol ; 1958: 47-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945213

RESUMO

Secondary structure elements (SSEs) are inherent parts of protein structures, and their arrangement is characteristic for each protein family. Therefore, annotation of SSEs can facilitate orientation in the vast number of homologous structures which is now available for many protein families. It also provides a way to identify and annotate the key regions, like active sites and channels, and subsequently answer the key research questions, such as understanding of molecular function and its variability.This chapter introduces the concept of SSE annotation and describes the workflow for obtaining SSE annotation for the members of a selected protein family using program SecStrAnnotator.


Assuntos
Motivos de Aminoácidos , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , Proteínas/química , Algoritmos , Domínio Catalítico/genética , Proteínas/genética , Software
19.
J Phys Chem B ; 122(34): 8113-8121, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30084252

RESUMO

Rapid and accurate binding affinity prediction of protein-carbohydrate complexes is a major challenge in glycomimetics design. Among the existing computational techniques, end-point methods have received considerable interest because of their low computational cost. However, significant obstacles remain when such methods are applied to protein-glycan complexes. This article reports the performance of end-point free-energy calculation methods: molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA), MM/generalized Born surface area (MM/GBSA), and quantum mechanics-MM/GBSA (QM-MM/GBSA) on monosaccharides bound to RSL lectin from Ralstonia solanacearum. A careful investigation of the molecular dynamics simulation length, van der Waals radii sets, GB models, QM Hamiltonians, and entropic compensation has been made, and the results are compared with the experimental binding free energies from isothermal titration calorimetry/surface plasmon resonance measurements. The binding free energies using implicit solvent methods are found to be sensitive to the simulation length, radii set, GB model, and QM Hamiltonian. A simulation length of 10 ns using the radii set mbondi provides the best agreement with the experimental values ( r2 = 0.96) by MM/PBSA. The GBHCT model is in accord with the experimental values in MM/GBSA ( r2 = 0.91) or in combination with parameterized model number 6 (PM6) ( r2 = 0.98) in QM-MM/GBSA. Out of 12 QM Hamiltonians tested, PM6, density functional theory-based tight binding (DFTB), and their variants proved to be more efficient than other semiempirical methods. These methods perform equally well in predicting both absolute and relative binding free energies.


Assuntos
Lectinas/metabolismo , Monossacarídeos/metabolismo , Entropia , Lectinas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Monossacarídeos/química , Ligação Proteica , Teoria Quântica , Ralstonia solanacearum/química , Termodinâmica
20.
Nucleic Acids Res ; 46(W1): W368-W373, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718451

RESUMO

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.


Assuntos
Biologia Computacional , Internet , Conformação Proteica , Software , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...